Tracking Program Electronic Health Records Pilot Projects

Gonza Namulanda, DrPH, MS
Health Scientist, Environmental Public Health Tracking Branch
National Center for Environmental Health, CDC

Public Health Informatics Conference Webinar Series
02/06/2017
Acknowledgements

- New York City (NYC)
 - Katharine H. McVeigh
 - Elizabeth Lurie
 - Remle Newton-Dame
 - Wendy Mckelvey

- California
 - Max Richardson
 - Eric Roberts
 - Paul English

- Massachusetts
 - Robert Knorr
 - Alicia Fraser

- Missouri
 - Roger Gibson
 - Scott Patterson
Environmental Public Health Tracking Network

...a system of integrated health, exposure, and hazard information and data from a variety of national, state, and city sources.
Tracking Network Grantees

CDC’s National Environmental Public Health Tracking Program

August 2014

25 States and 1 City
Current Content and Data

Health Effects Data
- Asthma
- Birth Defects
- Cancer
- Carbon Monoxide Poisoning
- Childhood Lead Poisoning
- Developmental Disabilities
- Heart Attacks
- Heat stress illness
- Reproductive and Birth Outcomes

Environment Data
- Climate Change
- Community Design
- Homes
- Outdoor Air Quality
- Community Water Quality
- Pesticide Exposures

Population Health
- Biomonitoring
- Children’s Environmental Health
- Health Behaviors
- Population Characteristics
Some Data Gaps

• Timeliness of data
• Finer resolution data
• Linked risk factor data
Electronic Health Records

• Electronic Health Record (EHRs)
 – a longitudinal electronic record of patient health info
 – generated by one or more encounters in any care delivery setting

• Uses
 – automate provider’s workflow
 – assist providers in making patient care decisions
 – Access data from other systems: pharmacy & lab
Benefits to Public Health

- Enhance public health surveillance
- Improve public health outcomes
Electronic Health Records Pilot Projects

- Awardees participating in this optional activity must pilot the use of EHRs within the Tracking Program by
 - Obtaining, evaluating, and using EHRs data

- Awardees must report on the innovative approaches applied for utilizing EHR by addressing:
 - How could EHRs be used in Tracking?
 - What are the technical requirements for integrating EHRs data into the state/local networks and the National Tracking Network?
 - What are core data elements needed to apply EHRs to Tracking?
 - What are the challenges and barriers to acquiring and processing EHRs? and/or
 - What are the innovative and emerging approaches to utilize EHRs within Tracking?
4 Funded Projects

- California – EHRs for public health surveillance of diabetes
- Massachusetts – EHRs for public health surveillance of Asthma and ALS
- New York City – Validity of health status classifications in EHRs compared to NYC HANES survey classifications
- Missouri – Implementation of EHRs data from two systems
California: EHRs for public health surveillance of diabetes

- Analyze the practicality, validity, and surveillance utility of glycohemoglobin as a marker for diabetes risks
 - Timely surveillance
 - Inform community-level prevention efforts

- Partnered with Kaiser Permanente
 - Northern California

- 2 participating counties in San Francisco Bay area
 - 412,400 records included (≥18 years)
Methods

• Data: Patient demographics, laboratory data, characteristics of covered patients

• Definitions
 – % of members with maximum glycohemoglobin ≥7, 8 or 9%
 – Sensitivity, specificity, positive predictive value
 • Five-year maximum glycohemoglobin value ≥7%
 • Diabetes Prevalence
Results

• Disparities in diabetes prevalence
 – Race and income
 – Census tract

• Laboratory data may be sufficient for public health surveillance
 – For some conditions
Massachusetts: EHRs for public health surveillance of Asthma and ALS

- Evaluate the utility of EHRs data as a tool for routine public health surveillance of Amyotrophic lateral sclerosis (ALS) and pediatric Asthma

- MDPHnet – share EHRs data with public health agencies

- 3 health care practice groups participating
 - Approximately 1.3 million (15% of MA population)
Methods

• Asthma and ALS case definitions
 – Compared ICD-9 only with ICD-9 and drug prescription

• EHR based prevalence vs. traditional surveillance methods
 – Pediatric Asthma benchmark data from state-wide school-based nurse survey
 – ALS benchmark data from comprehensive ALS Registry involving full medical record review

• Evaluated impact of MDPHnet coverage on reliability of asthma prevalence
 – Asthma prevalence for 12 towns
 – Compared MDPHnet estimates with benchmark
Results

- Results varied greatly by case definition algorithms
- Surprisingly, ICD9 based algorithms fared better for both asthma and ALS
- Independent validation may be needed for each outcome prior to use of EHR-based surveillance
- Rare disease surveillance possible, more research is needed

Correlation between MDPHnet coverage and accuracy of asthma prevalence estimates
NYC: Validity of health status classifications in EHRs compared to population-based estimates

- To assess the diagnostic validity of health indicators from EHRs relative to NYC HANES
 - Smoking, obesity, hypertension, diabetes and elevated cholesterol

- NYC Macroscope - transforms EHR data into population-based prevalence estimates for the “in-care” population

- Population covered
 - In-care population, >700 ambulatory practices
 - 38 included in this study
Methods

• Definitions
 – BMI (obesity), diagnosis/ICD 9 (diabetes, hypertension, elevated cholesterol), or self report (smoking, hypertension, elevated cholesterol)

• Compared with NYC Health and Nutrition Examination Survey (NYC HANES) survey classifications
 – Reviewed medical charts for NYC HANES represented in EHRs
 – Sensitivity, specificity, positive and negative predictive value
Results

• Diagnostic validity
 – High for smoking, obesity, and hypertension
 – Lower for diabetes
 – Poor for cholesterol

• Limitations
 – Small sample size
Missouri: Implementing use of EHRs data from two systems

• Develop a secure data portal and warehouse to
 – Receive, validate and process EHRs data

• Integrate EHRs data in Tracking
 – Missouri health strategic architectures and information cooperative (MOHSAIC)
 • Centralized EHRs database
 • Standardizing electronic laboratory reporting
 – Blood lead testing
 – Electronic surveillance system for the early notification of community-based epidemics (ESSENCE)
 • ED visits: Heat related, CO poisonings, Asthma
Methods

• Created a back end for storing EHRs data

• Developed a front end to allow interaction with the data
Results

• Demonstrated a live query page that pulled data from the data cubes in back-end

• When complete, work on analysis of real-time data (e.g., Asthma ED) and air pollution
Some observations

• Accessing EHRs data
 – Need for health information exchanges
 – Challenges may be more policy than technical
 – Privacy policies to allow sharing of data with public health

• Validation of EHRs estimates
 – Reference data sources

• Different algorithms for different outcomes
Next steps

• Synthesize the case studies to develop
 – Utility of EHRs data for Tracking
 – Lessons learned
 – Recommendations for Tracking
Thank you!

Contact: fos0@cdc.gov
Visit the Tracking Network today!
www.cdc.gov/ephtracking

Info about the Tracking Program
www.cdc.gov/nceh/tracking

Contact Us
TrackingSupport@cdc.gov